Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Explor Target Antitumor Ther ; 5(2): 409-431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745769

RESUMO

Colorectal cancer (CRC) is a heterogeneous disease. Conventional two-dimensional (2D) culture employing cell lines was developed to study the molecular properties of CRC in vitro. Although these cell lines which are isolated from the tumor niche in which cancer develop, the translation to human model such as studying drug response is often hindered by the inability of cell lines to recapture original tumor features and the lack of heterogeneous clinical tumors represented by this 2D model, differed from in vivo condition. These limitations which may be overcome by utilizing three-dimensional (3D) culture consisting of spheroids and organoids. Over the past decade, great advancements have been made in optimizing culture method to establish spheroids and organoids of solid tumors including of CRC for multiple purposes including drug screening and establishing personalized medicine. These structures have been proven to be versatile and robust models to study CRC progression and deciphering its heterogeneity. This review will describe on advances in 3D culture technology and the application as well as the challenges of CRC-derived spheroids and organoids as a mode to screen for anticancer drugs.

2.
Asian Pac J Cancer Prev ; 24(9): 3099-3107, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774061

RESUMO

BACKGROUND: Accumulation of cancer-associated fibroblasts (CAFs) in the tumor stroma is linked to poor prognosis in colorectal cancer (CRC). CAF-cancer cell interplay, facilitated by secretomes including transforming growth factor-beta 1 (TGF-ß1), supports fibroblast activation, drives colorectal carcinogenesis, and contributes to CRC aggressive phenotypes. Although widely used, traditional CAF biomarkers are found to have heterogeneous and non-specific expression. Amine oxidase copper containing 3 (AOC3) and leucine-rich repeat-containing 17 (LRRC17) have been reported to be emerging markers of myofibroblasts. AIM: Our objective was to investigate the potential of AOC3 and LRRC17 as biomarkers for fibroblast activation thus predicting their roles in CRC progression. METHODS: Immunofluorescence (IF) staining of AOC3 and LRRC17 was performed on myofibroblast line (CCD-112CoN), primary fibroblasts from colorectal tumor (CAFs), and adjacent normal tissue (normal fibroblasts-NFs). SW620 (epithelial CRC cell line) was used as a control.  Conventional CAF biomarker (alpha-smooth muscle actin - α-SMA) was included in the IF analysis. Fluorescence intensity was compared between groups using ImageJ software. Proliferation and contractility of treated cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and collagen gel contraction assays, respectively. Fibroblast contraction under TGF-ß1 treatment was compared to those treated with complete medium (addition of 10% serum) and serum free (SF) medium. RESULTS: Positive AOC3, LRRC17, and α-SMA expression were observed in colonic fibroblasts, more prominent in CAFs, whereas negative staining was found in SW620. Significant downregulation of AOC3, and upregulations in LRRC17 and α-SMA expression was found in TGF-ß1-treated fibroblasts compared to SF medium treatment (p-value<0.05). All fibroblasts exhibited higher proliferation in complete medium and under treatment with conditioned medium from SW620 than SF medium. Significant contraction of NFs was recorded in complete medium and TGF-ß1 (p-value<0.01). CONCLUSION: Our results demonstrate AOC3 and LRRC17 as the potential markers of CAF activation which promote CRC progression.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fibroblastos/patologia , Neoplasias Colorretais/patologia , Actinas/metabolismo , Biomarcadores/metabolismo , Fibroblastos Associados a Câncer/metabolismo
3.
Biology (Basel) ; 11(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36101394

RESUMO

Cancer is a result of a dynamic evolutionary process. It is composed of cancer cells and the tumour microenvironment (TME). One of the major cellular constituents of TME, cancer-associated fibroblasts (CAFs) are known to interact with cancer cells and promote colorectal carcinogenesis. The accumulation of these activated fibroblasts is linked to poor diagnosis in colorectal cancer (CRC) patients and recurrence of the disease. However, the interplay between cancer cells and CAFs is yet to be described, especially in relation to the sidedness of colorectal carcinogenesis. CRC, which is the third most commonly diagnosed cancer globally, can be classified according to the anatomical region from which they originate: left-sided (LCRC) and right-sided CRC (RCR). Both cancers differ in many aspects, including in histology, evolution, and molecular signatures. Despite occurring at lower frequency, RCRC is often associated with worse diagnosis compared to LCRC. The differences in molecular profiles between RCRC and LCRC also influence the mode of treatment that can be used to specifically target these cancer entities. A better understanding of the cancer cell-CAF interplay and its association with RCRC and LRCR progression will provide better insight into potential translational aspects of targeted treatment for CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...